

# CITY-SOIL INTERACTION IN THE VALLEY OF MEXICO: AMPLIFICATION AND LONG DURATION GROUND MOTION

Leonardo Ramirez-Guzman<sup>1</sup>, Marco Macías Castillo<sup>1</sup>, Moisés Contreras Ruiz Esparza<sup>1</sup>, Jorge Aguirre González<sup>1</sup>, and Oscar Zepeda Ramos<sup>2</sup>

**1 Instituto de Ingeniería-UNAM** 

2 Centro Nacional de Prevención de Desastres



## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions



## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions





### **Central Mexico:**

- More than half the population lives in this region
- Holds most of the infrastructure of the country





### **Central Mexico:**

- More than half the population lives in this region
- Holds most of the infrastructure of the country

## Valley of Mexico (Mexico City):

- More than one third of Mexico's population lives in this region.
- More than one third of the GDP is generated *here*.

### To understand the natural hazards is a priority



#### Most of Mexico City is located in a former lake





#### Most of Mexico City is located in a former lake



#### Unusual site effects



### **Ground Motion Amplification and Long Duration**







Acceleration records for the Mw 8.0 September 19th Michoacan Earthquake. After Singh et al. (1988, BSSA). Instrumentation and data maintained by the Seismic Analysis and Instrumentation Team (II-UNAM).



### **Ground Motion Amplification and Long Duration**







Acceleration records for the Mw 8.0 September 19th Michoacan Earthquake. After Singh et al. (1988, BSSA). Instrumentation and data maintained by the Seismic Analysis and Instrumentation Team (II-UNAM)



#### **Ground Motion Amplification and Long Duration**



Acceleration records for the Mw 8.0 September 19th Michoacan Earthquake. After Singh et al. (1988, BSSA). Instrumentation and data maintained by the Seismic Analysis and Instrumentation Team (II-UNAM)





#### **Ground Motion Amplification and Long Duration**



Acceleration records for the Mw 8.0 September 19th Michoacan Earthquake. After Singh et al. (1988, BSSA). Instrumentation and data maintained by the Seismic Analysis and Instrumentation Team (II-UNAM)





#### **Ground Motion Amplification and Long Duration**





#### **Ground Motion Amplification and Long Duration**



•No consensus on the mechanism



## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions



















## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions







Tomography results (Iglesias et al., 2010)

Constrained with gravity and other geophyisical and geotechnical information (e.g. Espindola, 2001; Valdes & Meyer, 1996)











#### GUI CMVM







0

#### Clay/low velocity deposits thickness



Model construction is based on:

- Fundamentamental periods in the Lake
- A background mean profile
- 15 profiles

The information is used to generate a regular grid.



0

Clay/low velocity deposits thickness







## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions



# **Mexico City Model**

### Mexico City and Metropolitan Area Building Inventory

#### Information Available:

- **Building inventory** 
  - Property polygons (city)
  - Property's maximum number of stories
- LIDAR (5m resolution)





*Cool color levels depict clay/low Vs thickness* 

#### Num. Stories



# **Mexico City Model**

### **Processing Building Inventory and LIDAR**





# **Mexico City Model**

### **Processing Building Inventory and LIDAR**







## Outline

- Introduction
- City-Soil Interaction
  - Central Mexico and Valley of Mexico Velocity Model
  - Mexico City Model
  - Simulations and Results
- Conclusions







# **Peak Ground Velocity ("free surface")**





# **Peak Ground Velocity ("free surface")**









Duration=time to reach from 0.05 to 0.9 the acceleration energy





Duration=time to reach from 0.05 to 0.9 the acceleration energy



- Intraslab Earthquake
- (regional effect minimized)
- June 16<sup>th</sup> Mw=5.9 Huitzuco, Mexico
- Maximum Frequency=1Hz
- 85 seconds simulation
- ~215 K elements
- Minimum element size=2m



Simulated at DGTIC-UNAM cluster













INSTITUTO DE INGENIERÍA

ΔΜ



- The effect of the build environment on the wave field is important in Mexico City.
- Peak ground motions parameters tend to be lower when building clusters are present
- The buildings are one of the mechanisms that can be responsible for the observed in the ground motion in Mexico City.
- A larger set of simulated earthquakes is required.